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Abstract—Auction is an effective mechanism to distribute
spectrum resources. Although many privacy-preserving auction
schemes for spectrum allocation have been proposed, none of
them is able to perform practical spectrum auctions while ensur-
ing enough security for bidders’ private information, such as geo-
locations, bid values, and data access patterns. To address this
problem, we propose SLISA, a lightweight auction framework
which enables an efficient spectrum allocation without revealing
anything but the auction outcome, i.e., the winning bidders and
their clearing prices. We present contributions on two fronts.
First, as a foundation of our design, we adopt a Shuffle-then-
Compute strategy to build a series of secure sub-protocols based
on lightweight cryptographic primitives (e.g., additive secret
sharing and basic garbled circuits). Second, we improve an
advanced spectrum auction mechanism to make it data-oblivious,
such that data access patterns can be hidden. Meanwhile, the
modified protocols adapt to our elaborate building blocks without
affecting its validity and security. We formally prove the security
of all protocols under a semi-honest adversary model, and
demonstrate performance improvements compared with state-of-
the-art works through extensive experiments.

I. INTRODUCTION

Dynamic spectrum allocation via auction has become a
promising approach to improve efficiency in spectrum utiliza-
tion. There have been extensive works on designing truthful
spectrum auctions, in which the auctioneer is assumed to be
fully trusted, and all bidders would submit their true bids un-
reservedly [1]–[4]. In addition, due to the scarcity of spectrum
resources, the bidders are usually required to provide the geo-
location data for spectrum reuse. However, it is impractical
to trust the auctioneer and bidders unconditionally, as they
have probably disrupted a normal auction process to gain illicit
benefits. For example, a dishonest auctioneer can simply adapt
its pricing strategy to obtain extra profit by monitoring the
bidders’ bids. Through learning the historical bids of others,
a bidder can choose a bid untruthfully to make the maximum
profit. Furthermore, an external attacker is able to detect the
service area of the bidders by obtaining geo-location infor-
mation (possibly leaked from the auctioneer). Therefore, it is
significant to design a secure auction framework for spectrum
allocation, in which one’s geo-location and bid should not be
disclosed to the auctioneer and other rival bidders.

There exist a number of works on designing spectrum
auctions in a privacy-preserving manner [5]–[12]. However,
these advanced works fail to provide strong security guarantees
for the all above-mentioned private information of bidders.
In [5], [6], though bid values are submitted in an encrypted
form, the auctioneer can deduce the order of these bids by
observing the data access patterns during the auction. The
works in [7]–[9] focus on how to protect bid values with
no regard for bidders’ location privacy. In [10]–[12], the data
access patterns can be used to infer the position relationships
between all bidders. But besides that, the performance of
these works is barely satisfactory in most realistic cases.
For example, the schemes in [5], [10]–[12] involve a large
number of homomorphic encryption primitives, which are too
costly to make these schemes scalable to support large-scale
bidders. The systems in [7]–[9] heavily rely on great-depth
garbled circuits [13], causing an impractical computation and
communication cost. In short, conducting an efficient spectrum
auction with strong security guarantees remains a challenge.

Motivated by the above arguments, in this paper we pro-
pose a Secure and LIghtweight Spectrum Auction framework,
named SLISA. Our goal is to carry out a fully secure spectrum
auction efficiently without revealing any information about
bidders’ geo-locations and bid values. To this end, we employ
lightweight cryptographic primitives, such as additive secret
sharing and basic garbled circuits, to design a set of sub-
protocols that support secure arithmetic operations, secure
maximum selecting, and secure sorting. Based on these elabo-
rate building blocks, we achieve all phases of the spectrum auc-
tion in a privacy-preserving manner, while ensuring the privacy
of bidders’ geo-locations and bid values. In addition, to avoid
the leakage of potential location relations and bid ranking
caused by snooping data access patterns, our design is engaged
in a two-pronged effort. First, we advocate a Shuffle-then-
Compute strategy, which randomly permutes inputs before
feeding it to original algorithms, for building sub-protocols to
prevent leakage from data access patterns. Second, we design
a data-oblivious auction algorithm whose execution path is
independent of inputs, i.e., geo-locations and bid values.

In our work, the major challenges originate from the conflict-



ing requirements of high efficiency and strong security. Secure
sorting is a dominant operation in the secure auction. Most
of the existing works [14], [15] on the secure-sorting incur
considerable overheads, since these methods involve plenty of
time-consuming encryptions/decryptions or large-scale circuit
evaluations. Moreover, the process of secure spectrum auction
is generally complicated, meaning that extensive intermediate
results exist in many phases of the auction. Unfortunately, such
intermediate information has the potential to reveal indirect
information about the results (e.g., whether a bid value is
higher than another one) even if the exact value is protected.
This makes it challenging to conduct a fully secure auction
in which no adversary with arbitrary computation power can
infer additional information except for auction outcomes. We
summarize our contributions as follows:

1) In combination with additive secret sharing and garbled
circuits, we present a set of sub-protocols to support
secure arithmetic operations, secure maximum selecting
and secure sorting, which can be used as building blocks
for secure spectrum auction as well as other kinds of auc-
tions and applications, e.g., virtual machine auction [16],
[17], advertising auction [18], service recommendation
[19] and service composition [20], [21].

2) Based on the building blocks, we propose a lightweight
auction framework (SLISA) for spectrum allocation with
strong security guarantees for bidders’ private informa-
tion including geo-locations and bid values. Our frame-
work can remarkably improve auction efficiency, which
benefits from the shuffle-then-compute design strategy
and the use of lightweight cryptographic primitives.

3) By using proof-by-simulation techniques, we formally
prove that all the protocols in SLISA are secure under a
semi-honest adversary model. We conduct extensive ex-
periments to show performance improvements compared
with state-of-the-art works.

The rest of the paper is organized as follows. Section II
presents the related work. Section III introduces the system
model and design goals. The building blocks that used in
SLISA are introduced in Section IV. The details of secure
spectrum auction are presented in Section V. The security
analysis and experimental evaluations are shown in Section VI
and Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORK

There are a large body of works on spectrum auction design
in the past decade. Zhou et al. propose VERITAS [22], a
truthful single-sided spectrum auction system to enforce users
to bid their true valuations of the spectrum. Then the same
authors design TRUST [23], the truthful double spectrum auc-
tion mechanism, which eliminated the selfish behaviors of both
sellers and buyers. Based on TRUST, Yao et al. put forward
a more socially efficient double spectrum auction mechanism
TDSA [24], which has a virtual group bidding mechanism to
improve spectrum utilization. Continuously, a number of more
advanced spectrum auction mechanisms have been proposed
for many different purposes, such as reverse spectrum auction

TABLE I
COMPARISON OF OUR WORK WITH PREVIOUS SECURE SCHEMES

Properties [5] [6] [7]–[9] [10]–[12] SLISA
Bid value privacy

√ √ √ √

Geo-location privacy × ×
√ √

Hide data access pattern × × ×
√

Double auctions ×
√ √ √

Truthfulness
√ √ √ √

[25], heterogeneous spectrum auction [26], and combinatorial
auction [27]. However, these spectrum auction mechanisms
only focus on the achievement of truthfulness, while ignoring
security guarantees for bidders.

Furthermore, secure spectrum auctions have been exten-
sively studied in recent years. The works in [5], [6] provide
privacy-preserving solutions for single-sided spectrum auction-
s. To solve security suffering in double spectrum auctions,
Chen et al. utilize garbled circuits to construct two secure
auction frameworks PS-TRUST [7] and ITSEC [8], which can
protect bids privacy in double spectrum auctions. In order to
improve the efficiency of double spectrum auctions, Chen et
al. [9] and Wang et al. [10], [11] propose a series of auction
schemes by building secure mixed protocols based on multiple
cryptographic primitives. In addition, ARMOR [12] leverages
homomorphic encryption, order-preserving encryption and gar-
bled circuits to devise a privacy-preserving protocol for com-
binatorial auction mechanisms. However, none of these works
provides strong protections for geo-locations, bid values and
data access patterns. For clarity, we summarize the differences
between our work and previous secure schemes in Table I.

III. PROBLEM STATEMENT

A. System Model

Our auction framework is shown in Fig. 1, consisting of the
following four entities: sellers, buyers, an auctioneer (A) and
an auction agent (B). The auctioneer and auction agent, who
are semi-honest and non-colluding, cooperate to run a privacy-
preserving auction mechanism. We note that such a two-party
model has been widely adopted in the literature under various
secure applications (e.g., [9], [10], [28], [29], to just list a few)
and our adoption also follows this popular trend.

We consider a double auction for spectrum allocation, where
M sellers want to sublease their homogeneous channels to
N buyers. We use sm(1 ≤ m ≤ M) to denote the set of
sellers, each of whom provides one channel for sale. Let
bn(1 ≤ n ≤ N) denote the set of buyers, each of whom
requests one channel. In the auction, each seller sm submit
the sell-bid Vm to the auctioneer. After that, each buyer bn
submit a request (Bn, xn, yn, rn), in which Bn is a buy-bid
for one channel, (xn, yn) is a location, and rn is a conflict
radius, to the auctioneer. Note that, spectrum can be allocated
to multiple conflict-free buyers, which improves the spectrum
utilization. Based on this information, the auctioneer matches
the winning sellers and buyers, and determines their respective
clearing prices. We summarize the notations throughout this
paper in Table II.
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Fig. 1. System model.

B. Double Spectrum Auction Mechanism

We review a generic double spectrum auction mechanism
TDSA [24]. Now we sketch its executable process as follows.

1) Buyer Grouping: The auctioneer first constructs a conflict
graph of buyers based on the locations and interference ranges.
Then, a conflict-free buyer group Gt(t ∈ {1, 2, . . . , T}) sub-
ject to this conflict graph is formed by using a bid-independent
grouping algorithm.

2) Virtual Group Bidding: Suppose each buyer group Gt

has Rt members, then the virtual groups can be denoted as
V Gj , j ∈ {1, 2, . . . , Rt} according to their size. Assume bids
in group Gt are sorted as: Bt,1 ≥ Bt,2 ≥ . . . ≥ Bt,Rt . For
virtual group V Gj , the virtual group bid is Bv

t,j = Bt,j × j.
Finally, the group bid GBt for group Gt can be computed
as GBt = maxj∈{1,2,...,Rt}(B

v
t,j). Subsequently, each buyer

group Gt will bid its group bid GBt acting as a single “buyer”.
3) Preliminary Winner Determination: The auctioneer first

sorts the sell-bids Vm(1 ≤ m ≤ M) in a non-descending order,
and sort the group bids of buy group Gt in a non-ascending
order as follows:

O′ : V1 ≤ V2 ≤ . . . ≤ VM

O′′ : GB1 ≥ GB2 ≥ . . . ≥ GBT

Then, the last profitable index can be calculated as follows:

K = arg max
k≤min(M,T )

(GBk ≥ Vk and GBk ̸= GBk−1). (1)

The preliminary auction winners are first k − 1 sellers in O′

and first k−1 buyer groups in O′′. The clearing price charged
by the winning sellers is the K-th seller’s bid, i.e., P s = Vk.
Similarly, the payment of the winning buyer group is the K-th
buyer group’s bid, i.e., PG = GBK .

4) Washing Out: After preliminary winners are selected, the
auctioneer needs to remove buyers whose bids are too low to
afford the payment. The remaining buyers are the final winners
of the auction. Recall that the buyers’ bids in group Gt is
sorted in a non-ascending order, Bt,1 ≥ Bt,2 ≥ . . . ≥ Bt,Rt .
The auctioneer begins to wash out buyers in Gt one by
one from Rt to 1, until finding a virtual group V GCt =
Bt,1, Bt,2, . . . , Bt,Ct whose virtual bid is larger than the price
for winning buyer groups, i.e., Bv

t,Ct
= Bt,Ct × Ct > PG.

5) Final Pricing: The auctioneer buys each winning seller’s
channel at the price of P s, and sells a channel to each winning
buyer group at the price of PG. Moreover, in a wining group
Gt, the clearing price for each buyer is P b

t = PG/Ct.

TABLE II
NOTATIONS AND DEFINITIONS

M,N, T the numbers of sellers, buyers and buyer groups
Vm, Bn the sell-bid and buy-bid
(xn, yn), rdn the location and conflict radius of buyer bn
{Gt}T

t=1 the set of non-conflict buyer groups
Rt the number of the buyers in Gt

Bt,j the buyer’s bid in Gt, 1 ≤ j ≤ Rt

{V Gj}Rt
j=1 the virtual groups

Bv
t,j the virtual group bid

GBt the group bid of group Gt

P s, PG, P b
t the clearing price for winning sellers, buyer groups and buyers

⟨x⟩ the secret-shared form of the value x, ⟨x⟩ = (⟨x⟩A , ⟨x⟩B)

⟨x⟩A / ⟨x⟩B the share of x stored in A or B

C. Threat Model and Design Goals

In our content, we consider the security threats that flow
largely from the auctioneer and the auction agent. That is,
these two parties are considered as adversaries. Following most
popular security works [8]–[12], [28], [29], we assume that our
auction scheme is in the semi-honest and non-colluding model,
such that the auctioneer and the agent would faithfully carry
out the auction protocol while they attempt to infer private
information besides the auction outcome.

Our aim is to design a secure and efficient auction scheme
for spectrum allocation based on TDSA. To provide strong
protection for both location privacy and bid privacy, A and
B are required to know nothing about the buyers’ location
information (xn, yn, rdn), buy-bids Bn, and sell-bids Vm. This
would imply that all protocols involved in the auction scheme
should achieve information-theoretic security [30]. In other
words, the security of these protocols can be proven formally
under a standard security model. In addition, facing plenty of
auction users and real-time requirements, our auction scheme
should be efficient with low computation and communication
overheads. For that, we do not adopt some computation-
intensive encryption mechanisms (e.g., homomorphic encryp-
tions) in the online stage.

IV. BUILDING BLOCKS: SECURE BASIC OPERATIONS ON
SECRET-SHARED DATA

Before working with secure auction specifics, we describe in
detail the building blocks: first, secure arithmetic operations on
secret-shared data, and second, secure maximum/sort protocol
based on the alternating use of secret sharing and garbled cir-
cuit. These operations are implemented via secure interactions
of two parties A and B described earlier in Section III-A.

A. Secure Arithmetic Operations on Secret-shared Data

For practical cost efficiency, we do not adopt homomorphic-
encryption-based methods, while we resort to the lightweight
cryptographic primitive – additive secret sharing [31], to
achieve the encryption of bid information. Given an ℓ-bit value
x, a random number r ∈ Z2ℓ is generated to additively secret-
share x as follows: ⟨x⟩A = (x − r) mod 2ℓ and ⟨x⟩B = r
mod 2ℓ, where ⟨x⟩A / ⟨x⟩B is only held by party A/B. A
shared value x is denoted as ⟨x⟩, i.e., ⟨x⟩ = (⟨x⟩A , ⟨x⟩B),
meaning that each party obtains a secret share of x. To recover



(Rec(·, ·)) the value x, party A (B) sends ⟨x⟩A(⟨x⟩B) to party
B (A) who computes x = ⟨x⟩A + ⟨x⟩B.

Secure addition and multiplication. To compute the sum
of two shared values ⟨x⟩ and ⟨y⟩ without disclosing x and y to
party A and B, we let party α(α ∈ {A,B}) locally computes
⟨x+ y⟩α = ⟨x⟩α+⟨y⟩α. To multiply a shared value ⟨x⟩ with a
public constant c, ⟨c · x⟩ = c · ⟨x⟩ can be computed as follows:
party α locally computes ⟨c · x⟩α = c · ⟨x⟩α. In order to per-
form secure multiplication ⟨x · y⟩ = ⟨x⟩ · ⟨y⟩, we leverage pre-
computed multiplication triplets [32] of the form ⟨c⟩ = ⟨a⟩·⟨b⟩,
which are secret-shared among the two parties. Party α locally
computes ⟨e⟩α = ⟨x⟩α − ⟨a⟩α and ⟨f⟩α = ⟨y⟩α − ⟨b⟩α. Both
parties run e=Rec(⟨e⟩A, ⟨e⟩B) and f=Rec(⟨f⟩A,⟨f⟩B), then
party A sets ⟨x · y⟩A = f · ⟨a⟩A + e · ⟨b⟩A + ⟨c⟩A and B
sets ⟨x · y⟩B = e · f + f · ⟨a⟩B + e · ⟨b⟩B + ⟨c⟩B. Note that
the secret shares of multiplication triplets can be distributed
to two parties offline due to data-independent characteristics.

Vectorization in the secret-shared setting. Operating on
the secret-shared vectors and matrices is critical to elevate
the efficiency. In particular, given two shared matrices ⟨X⟩
and ⟨Y⟩, we can achieve matrix addition non-interactively as
⟨X + Y⟩α=⟨X⟩α + ⟨Y⟩α for α ∈ {A,B}. To multiply two
shared matrices ⟨X⟩ and ⟨Y⟩, we leverage shared matrices
⟨U⟩ , ⟨V⟩ , ⟨Z⟩, in which U has the same size as X, V has the
same size as Y, each element in U and V is uniformly random
in Z2ℓ , and Z = U · V mod 2ℓ. Firstly, party α computes
⟨P⟩α = ⟨X⟩α − ⟨U⟩α and ⟨Q⟩α = ⟨Y⟩α − ⟨V⟩α. Then, two
parties jointly reconstruct P and Q. Finally, A sets ⟨X · Y⟩A =
⟨U⟩A · Q + P · ⟨V⟩A + ⟨Z⟩A and B sets ⟨X · Y⟩B = P · Q +
⟨U⟩B ·Q+P · ⟨V⟩B+ ⟨Z⟩B. We have to note that, this protocol
also supports to multiply a shared vector with a shared matrix,
and works on real-field data. We refer the readers to [29] for
the generation of the desired shared multiplication triplets and
the proof of security of the vectorized extension.

B. Secure Comparison Protocol

To support secure comparison on secret-shared values, we
leverage Yao’s garbled circuits (GC) [13], which enables two
parties to compute a function f(x, y) on their respective inputs
x and y without disclosing the inputs beyond what can be
deduced from the function output. We list four garbled circuits
used in this work. On the premise of not disclosing two input
values x and y, 1) an ADD circuit outputs z = x + y, 2) a
CMP circuit outputs 1 if x ≥ y and 0 otherwise, 3) a NEQ
circuit outputs 1 if x ̸= y and 0 otherwise, and 4) a DIV circuit
outputs an approximate result of x/y with a given precision.

On the basis of ADD and CMP circuits, we first customize
a COMP circuit for securely computing a flag u that indicates
whether x is larger than y (u = 1) or not (u = 0). Fig.
2(a) shows the structure of COMP circuit, where one ADD
circuit takes ⟨x⟩A and ⟨x⟩B as inputs while the other takes
⟨y⟩A and ⟨y⟩B as inputs, then the two outputs serve as the
inputs of the CMP circuit. Specifically, party A can serve as
the circuit constructor while party B can serve as the circuit
evaluator. B runs oblivious transfer (OT) protocol [33] with
A to obliviously obtain the garbled input corresponding to its

ADD

ADD

CMP

(a) COMP circuit

ADD

ADD

CMP
ADD

(b) COMP-ADD circuit

Fig. 2. The structure of garbled circuits

private input, then evaluates the circuit to get the result. If
the result is public, A directly sends it to B. If the required
output u is in a secret-shared form, we can insert an ADD
circuit into COMP circuit for dividing the result. As depicted
in Fig. 2(b), the output of a newly-built circuit COMP-ADD is
a secret share ⟨u⟩A while ⟨u⟩B is set as a random number −r
(r ∈ Z2ℓ). In a subsequent design, we will calculate inequality
relation and division by NEQ-ADD and DIV-ADD circuits.
The structure of them is similar to that of COMP-ADD circuit,
and the only change is to use NEQ/DIV circuit to replace CMP
circuit. Furthermore, we can easily compute the maximum
of two secret-shared data by leveraging COMP-ADD circuit.
Secure maximum (SecMax) protocol is based on the following
equations: max(x, y) = y+u·(x−y), u := x ≥ y. Specifically,
A and B first obtain the flag ⟨u⟩ = COMP-ADD(⟨x⟩ , ⟨y⟩),
then compute ⟨max(x, y)⟩ = ⟨y⟩+ ⟨u⟩ · (⟨x⟩ − ⟨y⟩).

C. Secure Sort (SST) Protocol

From the underlying auction in Section III-B, we find that
the bid sorting is a dominant operation. In this subsection,
we present a two-party protocol for a secure sort that runs
between party A and B. Given secret shares of an original
sequence x = [x1, x2, . . . , xn], the goal of secure sort (SST)
protocol is sorting x into a monotonically increasing sequence
xϕ = [xϕ(1), xϕ(2), . . . , xϕ(n)] under the secret-shared form,
where ϕ is a permutation of indices 1 to n that corresponds
to the indices of x’s elements sorted by its values xi. During
the execution of SST protocol, no information regarding the
plaintext of x is revealed to A and B.

For ensuring both efficiency and information-theoretic secu-
rity, we adopt a Shuffle-then-Compute strategy to devise secure
sort protocol in which we add a step that securely shuffles the
data before feeding it to a conventional sorting process. Let us
consider a quick sort algorithm in which original input is first
randomly permuted. During the execution, the adversary is
able to infer sensitive information, such as the relationship of
size between the elements, on the shuffled input by observing
access patterns. Yet this information cannot be linked back
to that of the original input, such that our sorting method is
sufficient to prevent leakage from access patterns.

Specifically, we obfuscate the elements’ orders by permuta-
tion matrices that can be generated by an arbitrary number
of row elementary operation on the identity matrix. Each
permutation matrix Ej represents a permutation function πj .
Multiplying the original sequence x with the permutation
matrix Ej yields the new shuffled array xπj . We give an
illustration for the case n = 3 in Fig. 3. In the design of
our secure two-party protocol, we first permute the original
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Fig. 3. The illustration of permutation matrix for n = 3, i denotes the position
in the original sequence and π(i) denotes that in the shuffled sequence.

sequence x = [x1, x2, . . . , xn] by two n× n random permuta-
tion matrices E1 (only known to A) and E2 (only known to
B) as follows:

x · E1 · E2 = [xπ−1
2 (π−1

1 (1)), xπ−1
2 (π−1

1 (2)), . . . , xπ−1
2 (π−1

1 (n))],

where π−1
j is the inverse function of πj . So neither of A and

B can recover the original index of xπ−1
2 (π−1

1 (i))(1 ≤ i ≤ n)
as long as the private permutation matrices are not leaked
out. After that, we use the shuffled sequence as an input for
a subsequent sorting process. In order to greatly reduce the
computation complexity, our construction of sorting is built
on quick sort algorithm.

Algorithm 1 summarizes the steps of SST protocol. Both
the input and the output of SST protocol are a sequence in
a secret-shared form. To start with, A generates a random
permutation matrix E1 and a random number matrix R1, then
computes ⟨E1⟩A = E1−R1 and sends R1 to B. After receiving
R1, B sets ⟨E1⟩B = R1. Through these steps, the permutation
matrix E1 is secret-shared between two parties while being
kept private to A. Then, A and B take similar actions to
generate the secret shares of permutation matrix E2 which
is only known to B. Subsequently, following the operations
during the vectorizing procedure in Section IV-A, A and B can
easily compute ⟨x′⟩ = ⟨x · E1 · E2⟩ = ⟨x⟩ · ⟨E1⟩ · ⟨E2⟩. At this
point, A and B jointly complete the shuffle process, which cuts
off the link between the original sequence and the new one.
Next, ⟨x′⟩ will be fed to a quick sort process. In contrast to the
traditional quick-sort algorithm, we use the customized COMP
circuit to achieve comparison operations on the secret-shared
data. And base on this, the underlying quick-sort method with
recursion is easily extended to support the shared sequence.

Key-Value Sort. Benefited from the above realization
method of sorting a set of shared values, our sorting protocol
is easily expandable to work on arrays where every element
is a pair of shared values representing a key-value pair
(ki, xi) and the value xi is used to sort the array. Firstly,
the input is updated with a set of pairs of shared values
(⟨k1⟩ , ⟨x1⟩), (⟨k2⟩ , ⟨x2⟩), . . . , (⟨kn⟩ , ⟨xn⟩), and similarly for
the output. Secondly, we need to use the same random permu-
tation matrices E1,E2 to shuffle of ki and xi simultaneously,
i.e., compute ⟨x′⟩ = ⟨x · E1 · E2⟩ and

⟨
k′⟩ = ⟨k · E1 · E2⟩.

Thirdly, the swap operations (as shown on Line 16 and Line
20) are used not only on the values but also on the keys, such
that the keys would be arranged to keep pace with their values.

Algorithm 1 Secure Sorting (SST) Protocol

Input: A inputs ⟨x⟩A = [⟨x1⟩A , . . . , ⟨xn⟩A]
B inputs ⟨x⟩B = [⟨x1⟩B , . . . , ⟨xn⟩B]

Output: A outputs
⟨
xϕ

⟩A
= [

⟨
xϕ(1)

⟩A
, . . . ,

⟨
xϕ(n)

⟩A
]

B outputs
⟨
xϕ

⟩B
= [

⟨
xϕ(1)

⟩B
, . . . ,

⟨
xϕ(n)

⟩B
]

1: A:
2: Generate a random permutation matrix E1 and a

random number matrix R1.
3: Set ⟨E1⟩A = E1 − R1 and send R1 to B.
4: B:
5: Receive R1 from A and set ⟨E1⟩B = R1.
6: A and B:
7: Similar to above, generate the secret shares of random

permutation matrices matrix E2 (only known to B),
making A get ⟨E2⟩A and B get ⟨E2⟩B.

8: Compute ⟨E1 · E2⟩ = ⟨E1⟩ · ⟨E2⟩.
9: Compute ⟨x′⟩ = ⟨x⟩ · ⟨E1 · E2⟩ = ⟨x · E1 · E2⟩.

10: Set low = 1 and up = n.
11: if low < up then
12: A: ⟨p⟩A =

⟨
x′up

⟩A, B: ⟨p⟩B =
⟨
x′up

⟩B.
13: Set i = low.
14: for j = low to (up− 1) do
15: if COMP(⟨p⟩ ,

⟨
x′j
⟩
) then

16: A: Swap(⟨x′i⟩
A
,
⟨
x′j
⟩A

), B: Swap(⟨x′i⟩
B
,
⟨
x′j
⟩B

).
17: i = i+ 1.
18: end if
19: end for
20: A: Swap(⟨x′i⟩

A
,
⟨
x′up

⟩A
), B: Swap(⟨x′i⟩

B
,
⟨
x′up

⟩B
).

21: Set up = i− 1 and repeat the steps from line 11 to 23.
22: Set low = i+ 1 and repeat the steps from line 11 to 23.
23: end if
24: A: Set

⟨
xϕ

⟩A
= ⟨x′⟩A, B: Set

⟨
xϕ

⟩B
= ⟨x′⟩B.

Accordingly, our protocol is able to sort multidimensional
array in which each element is a group of shared values
through similar updates. We provide experimental evaluations
for this extension in Section VII-B. The detailed procedure is
not described here due to a page limit.

V. SECURE SPECTRUM AUCTION

In this section, we propose a lightweight auction framework
(SLISA) for spectrum allocation with strong security guar-
antees. As mentioned above, our design rationale is based
on the TDSA scheme. However, the technical difficulty is
to execute the auction on the secret-shared data in a data-
oblivious manner. To achieve this, we improve the TDSA
auction mechanism to make it data-oblivious, and refactor it
by using secure sub-protocols presented in Section IV. The
main auction scheme consists of the following phases.

A. Bid Sharing and Submitting

At first, all sellers s1, s2, . . . , sM divide their IDs IDs
m

and sell-bids Vm(1 ≤ m ≤ M) locally by the additive
secret sharing, and then submit the shared IDs and bids to the
auctioneer A and the auction agent B. All buyers’ IDs IDb

n



Algorithm 2 Privacy-preserving Buyer Grouping Protocol
Input: Secret-shared IDs and requests of buyers.
Output: Secret-shared data of non-conflict buyer groups.
1: A and B:
2: Generate two secret-shared random permutation

matrices ⟨E1⟩ and ⟨E2⟩, where E1 and E2 are only
known to A and B, respectively.

3: Use ⟨E1⟩ and ⟨E2⟩ to shuffle the secret-shared tuples
{(
⟨
IDb

n

⟩
, ⟨Bn⟩ , ⟨xn⟩ , ⟨yn⟩ , ⟨rdn⟩)}Nn=1 to get a new

tuple array {(⟨ID′
i⟩ , ⟨B′

i⟩ , ⟨x′
i⟩ , ⟨y′i⟩ , ⟨rd′i⟩)}Ni=1.

4: Initialize edge set E = ∅.
5: for i = 1 to N do
6: for j = i+ 1 to N do
7: Compute ⟨rsum⟩ = (⟨rd′i⟩+

⟨
rd′j

⟩
)2,

⟨dis⟩ = (⟨x′
i⟩ −

⟨
x′
j

⟩
)2 + (⟨y′i⟩ −

⟨
y′j
⟩
)2.

8: if COMP(⟨rsum⟩ , ⟨dis⟩) then
9: E = E ∪ (bi, bj).

10: end if
11: end for
12: end for
13: Construct the conflict graph CG(B,E).
14: Get the set of non-conflict buyer groups G = {G1, G2,

. . . , GT } by GMIN algorithm.
15: Reorganize buyers’ IDs and buy-bids for each group

Gt, to get (⟨IDt,j⟩ , ⟨Bt,j⟩), 1 ≤ j ≤ R, 1 ≤ t ≤ T .

and requests (Bn, xn, yn, rdn)(1 ≤ n ≤ N) are divided and
submitted in the same way by buyers. The tuples submitted
by the sellers and buyers are as follows:
Sellers: (⟨IDs

m⟩ , ⟨Vm⟩), 1 ≤ m ≤ M
Buyers: (

⟨
IDb

n

⟩
, ⟨Bn⟩ , ⟨xn⟩ , ⟨yn⟩ , ⟨rdn⟩), 1 ≤ n ≤ N

B. Privacy-preserving Buyer Grouping

In this phase, the auctioneer and the agent perform a
privacy-preserving buyer grouping (PPBG) protocol for high
spectrum utilization. We first construct a conflict graph based
on the shared locations of buyers, then group buyers subject
to the conflict graph. To prevent potential privacy leakage of
the location relations, we adopt once again the shuffle-then-
compute strategy to design PPBG protocol.

As described in Algorithm 2, the auctioneer A and the
agent B jointly generate two secret-shared random permuta-
tion matrices ⟨E1⟩ and ⟨E2⟩ (E1 and E2 are only known
to A and B respectively), and use them to shuffle the tu-
ple array submitted by buyers. Then, A and B construc-
t the conflict graph according to the shuffled tuple array
{(⟨ID′

i⟩ , ⟨B′
i⟩ , ⟨x′

i⟩ , ⟨y′i⟩ , ⟨rd′i⟩)}Ni=1. The interference area
of buyer bi is represented by a circle centered on location
(xi, yi) with radius rdi. Two buyers bi and bj are non-conflict
if the following equation holds: (xi − xj)

2 + (yi − yj)
2 ≥

(rdi + rdj)
2. By using the arithmetic operations and COMP

circuit in Section IV-A, we can recognize whether bi is
conflicted with bj . Let B denote all buyers and E denote
conflict-edge set. If bi and bj are conflict, we add an edge
(bi, bj) into the edge set E. Furthermore, we can construct the

conflict graph CG(B,E) by checking the conflict relationships
between all buyers (Line 4-13). Next, we use a classic greedy
algorithm GMIN [34] (We omit its details due to a page limit),
which takes CG(B,E) as input, to yield the set of non-conflict
buyer groups G = {G1, G2, . . . , GT }. Assume that the group
Gt has Rt buyers and R = maxt∈{1,2,...,T}(Rt). Finally, we
reorganize buyers’ IDs and buy-bids for each group Gt to get
(
⟨
IDb

t,j

⟩
, ⟨Bt,j⟩), 1 ≤ j ≤ R, 1 ≤ t ≤ T . That is, the original

buyers’ IDs
⟨
IDb

n

⟩
and bids ⟨Bn⟩ are rearranged according

to different groups. Note that we pad Gt with (⟨0⟩ , ⟨0⟩) to
R buyer tuples for executing the subsequent processing in a
data-oblivious manner.

C. Privacy-preserving Spectrum Allocation

At the beginning, we construct a set of secret-shared multidi-
mensional arrays S, G and Gt(t ∈ {1, 2, . . . , T}) to represent
all sellers, all buyer groups, and all buyers belonged to group
Gt. In these arrays, each seller, each group, and each buyer
exist in the form of tuples as follows:
Sellers: (⟨IDs

m⟩ , ⟨Vm⟩ , ⟨fs
m⟩), 1 ≤ m ≤ M

Groups: (⟨GBt⟩ , ⟨Ct⟩ ,
⟨
P b
t

⟩
, ⟨fg

t ⟩), 1 ≤ t ≤ T
Buyers: (

⟨
IDb

t,j

⟩
, ⟨Bt,j⟩ ,

⟨
Bv

t,j

⟩
,
⟨
fb
t,j

⟩
), 1 ≤ j ≤ R, 1 ≤ t ≤ T

where fs
m, fg

t and f b
t,j are binary flags to indicate whether the

seller, group, and buyer are a winner (1) or not (0), respectively.
Then, we initialize these arrays as follows:

After that, we elaborate a data-oblivious spectrum allocation,
and present a privacy-preserving spectrum allocation (PPSA)
protocol as shown in Algorithm 3.

1) Secure Virtual Group Bidding (Line 1-8): This step uses
two looping statements to obtain virtual group bids Bv

t,j and
group bids GBt. In the outer for-loop, A and B sort all
buyers of Gt in a non-ascending order of buy-bid Bt,j by
SST protocol. Recall that the extended SST protocol is able to
sort a multidimensional array. For simplicity, we use the same
indices j ∈ [1, R] after the secure sorting without affecting
correctness. In the nested for-loop, A and B first compute
all virtual group bids Bv

t,j of group GT based on the secure
arithmetic operations on secret-shared data, and then select the
maximum of all virtual group bids as the group bid GBt by
SecMax protocol.

2) Secure Preliminary Winner Determination (Line 9-22):
In this step, we will obtain winning sellers’ IDs and clearing
prices for winning sellers and winning groups. At first, A and
B sort all sellers S in a non-descending order of sell-bid Vm,
and sort all group-bids GBt in a non-ascending order. From
the underlying TDSA scheme described in Section III-B, it is



vital to determine the critical index K according to Equation
(1). Next, inspired by the previous work [9], we leverage two
arrays of binary flags λk and ηk to find out K in a data-
independent manner:

• λk: indicates whether k is less than or equal to the critical
index j∗ (λk = 1) or not (λk = 0) (Line 11 & 13).

• ηk: indicates whether k is equal to the critical index K
(ηk = 1) or not (ηk = 0) (Line 18 & 20)

To facilitate understanding, we state the value-taking pattern
of these flags as follows:

k : 1 · · · K − 1 K K + 1 · · · θ
λk : 1 · · · 1 1 0 · · · 0
ηk : 0 0 0 1 0 · · · 0
fs
k : 1 1 1 0 0 · · · 0

With inputting the secret shared group bids and buy-bids, A
and B compute the secret shares of λ by COMP-ADD and
NEQ-ADD circuits, where λ = (GBk ≥ Vk∧GBk ̸= GBk−1).
Then, it is straightforward to compute ηk = λk − λk+1(1 ≤
k ≤ θ − 1) in term of the above pattern. After that, the flags
fs
k for sellers can be set to 1 when 1 ≤ k ≤ K − 1 by
fs
k−1 = λk(2 ≤ k ≤ θ) (Line 13). Based on these flags, the

clearing prices and IDs of winning sellers can be computed in
a data-oblivious manner as follows: P s = P s + Vk · ηk (Line
21), IDs

m = IDs
m · f b

m such that the failures’ ID is set to 0
(Line 15-17). Similarly, the clearing prices of winning groups
can be obtained by PG = PG +GBk · ηk (Line 21).

3) Secure Washing Out (Line 23-36): This step removes
the buyers in the winning group, whose bids are too low to
afford the clearing price PG. We first compute the flags fg

t =
(GBt > PG) for groups by COMP-ADD circuit (Line 24).
Next, to compute the number Ct of winning buyer in group
Gt in a data-independent manner, we introduce an array of
binary flags δj to indicate whether j is less than or equal to
Ct (δj = 1) or not (δj = 0). In a winning group, the value-
taking pattern of flags δj and f b

t,j as follows:

j : 1 · · · Ct − 1 Ct Ct + 1 · · · R
δj : 1 · · · 1 1 0 · · · 0
f b
t,j : 0 0 0 1 0 · · · 0

We compute these flags and Ct by δj = fg
t ∧ (Bv

t,j > PG),
f b
t,j = δj − δj+1, and Ct = Ct + j · f b

t,j (Line 25-31). Finally,
the clearing prices and IDs of winning buyers can be obtained
by IDb

t,j = IDb
t,j · f b

t,j and P b
t = fg

t · (PG/Ct) (Line 32-35).
4) Result Return (Line 37): In this step, A and B publish

the IDs and clearing prices of all winning sellers and winning
buyers as final auction results.

VI. SECURITY ANALYSIS

We first employ composition theory [30] to prove the secu-
rity of our protocols in the semi-honest adversary model [30]
(as shown in Definition 1), then demonstrate that our secure
spectrum auction can meet the desired security requirements.

Definition 1. Suppose that a two-party protocol Π asks A
(resp. B) to compute the function fA(x, y) (resp. fB(x, y)),

Algorithm 3 Privacy-preserving Spectrum Allocation Protocol
Input: Secret-shared arrays S, B and Gt(t ∈ {1, 2, . . . , T}).
Output: Secret-shared IDs and clearing prices of the

winning sellers and buyers.
1: A and B:
2: for 1 ≤ t ≤ T do
3: Sort Gt in a non-ascending order of buy-bid Bt,j

by SST protocol (use same indices after sorting).
4: for 1 ≤ j ≤ R do
5:

⟨
Bv

t,j

⟩
= j · ⟨Bt,j⟩

6: ⟨GBt⟩ = SecMax(⟨GBt⟩ ,
⟨
Bv

t,j

⟩
).

7: end for
8: end for
9: Sort S in a non-descending order of sell-bid Vm by

SST protocol.
10: Sort the group-bids {GBt}Tt=1 in a non-ascending

order by SST protocol.
11: θ = min(M,T ), ⟨λ1⟩ = COMP-ADD(⟨GB1⟩ , ⟨V1⟩).
12: for 2 ≤ k ≤ θ do
13: ⟨α⟩ = COMP-ADD(⟨GBk⟩ , ⟨Vk⟩),

⟨β⟩ = NEQ-ADD(⟨GBk⟩ , ⟨GBk−1⟩),
⟨λk⟩ = ⟨α⟩ · ⟨β⟩ ,

⟨
fs
k−1

⟩
= ⟨λk⟩.

14: end for
15: for 1 ≤ m ≤ M do
16: ⟨IDs

m⟩ = ⟨IDs
m⟩ ·

⟨
f b
m

⟩
.

17: end for
18: ⟨ηθ⟩ = ⟨λθ⟩
19: for 1 ≤ k ≤ θ − 1 do
20: ⟨ηk⟩ = ⟨λk⟩ − ⟨λk+1⟩.
21: ⟨P s⟩ = ⟨P s⟩+ ⟨Vk⟩ · ⟨ηk⟩ ,

⟨
PG

⟩
=

⟨
PG

⟩
+ ⟨GBk⟩ · ⟨ηk⟩.

22: end for
23: for 1 ≤ t ≤ T do
24: ⟨fg

t ⟩ = COMP-ADD(⟨GBt⟩ ,
⟨
PG

⟩
).

25: for 1 ≤ j ≤ R
26: ⟨γ⟩ = COMP-ADD(

⟨
Bv

t,j

⟩
,
⟨
PG

⟩
), ⟨δj⟩ = ⟨fg

t ⟩ · ⟨γ⟩.
27: end for
28: for 1 ≤ j ≤ R− 1 do
29:

⟨
fb
t,j

⟩
= ⟨δj⟩ − ⟨δj+1⟩.

30: ⟨Ct⟩ = ⟨Ct⟩+ j ·
⟨
fb
t,j

⟩
.

31: end for
32:

⟨
P b
t

⟩
= ⟨fg

t ⟩ · DIV-ADD(
⟨
PG

⟩
, ⟨Ct⟩).

33: for 1 ≤ j ≤ R do
34:

⟨
IDb

t,j

⟩
=

⟨
IDb

t,j

⟩
·
⟨
fb
t,j

⟩
.

35: end for
36: end for
37: Return

⟨
IDb

t,j

⟩
,
⟨
P b
t

⟩
(1 ≤ t ≤ T, 1 ≤ j ≤ R),

⟨IDs
m⟩ (1 ≤ m ≤ M), ⟨P s⟩.

where x, y are the inputs of A and B, respectively. Let
viewA(x, y) = (x, rA,m1, · · · ,mt) (resp. viewB(x, y) =
(y, rB,m1, · · · ,mt)) is the view of A (resp. B) during an
execution of Π on (x, y), where rA (resp. rB) represents
randomness of A (resp. B) and mi represents the i-th message
passed between the parties. Let OA(x, y) (resp. OB(x, y))
denotes A’s (resp. B’s) output. We say that protocol Π is se-
cure against semi-honest adversaries if there exist probabilistic
polynomial time (PPT) simulators S1 and S2 such that:



(S1(x, f
A(x, y)), f(x, y))

c≡ (viewA(x, y), O(x, y)) (2)

(S2(y, f
B(x, y)), f(x, y))

c≡ (viewB(x, y), O(x, y)) (3)

where
c≡ denotes computational indistinguishability.

We state that the arithmetic operations and garbled circuits
in Section IV are secure under the semi-honest adversaries
model. The formal security proofs of them can be found in
[29], [31]. COMP, COMP-ADD, NEQ-ADD, and DIV-ADD
circuits and SecMax protocol are direct applications of Yao’s
garbled circuits, whose security proof can be found in [35].
Then, we prove the security of all protocols as follows:

Theorem 1. As long as the arithmetic operations and COMP
circuit are secure against semi-honest adversaries, SST proto-
col is secure under the semi-honest adversaries model.

Proof. To prove the security of SST protocol, we construct
simulators in two distinct cases depending on which party is
corrupted. We show that for all PPT adversaries, the corrupted
party’s view based on the interaction between A and B is
indistinguishable to its view when it interacts with a simulator
instead. The interactive messages of SST protocol include the
data transferred in executing secure arithmetic operations and
COMP circuit, and the output of COMP circuit. Since the arith-
metic operations and COMP circuit are secure against semi-
honest adversaries, any PPT adversary cannot distinguish the
simulator’s views from the data transferred in these operations.
As for the output of COMP circuit, we construct a simulator
S1 to simulate A’s view. S1 chooses an integer σ from {0, 1}
uniformly at random to simulate the output of COMP circuit.
Recall that the COMP circuit’s input values are shuffled by
E1 ·E2 and these matrices are generated randomly. So the case
in which the output of COMP is assigned to 0 or 1 is randomly
given, such that any PPT adversary cannot distinguish σ
from COMP(⟨p⟩ ,

⟨
x′j
⟩
). Clearly, a simulator S2 can do the

same works as above to simulate B’s view. According to the
composition theory [35], we can claim that SST protocol is
secure under the semi-honest adversaries model.

Theorem 2. As long as the arithmetic operations, garbled
circuits, SecMax protocol, and SST protocol are secure against
semi-honest adversaries, PPBG protocol and PPSA protocol
are secure under the semi-honest adversaries model.

The proof of Theorem 2 is similar to that of Theorem 1,
and we omit this due to a page limit. Next, we demonstrate
that our auction scheme can achieve the desired security
properties, which is trivially guaranteed by the security of the
above protocols. Recall that each buyer divides the location
information (xn, yn, rn) into two shares by additive secret
sharing locally before submitting them to the auctioneer and
the agent. Since PPBG protocol is secure against semi-honest
adversaries, no information about (xn, yn, rn) is disclosed
to A and B, i.e., the location privacy can be preserved. As
the same as the location information, buy-bids Bn and sell-
bids Vm are secret-shared before uploading to A and B.
Since PPBG protocol and PPSA protocol are secure against

semi-honest adversaries, no information about Bn and Vm is
disclosed to A and B.

VII. PERFORMANCE EVALUATION

A. Experiment Setup

We implement all protocols in C++ and run experiments on
the two Amazon EC2 t2.large machines (as A and B) with
Linux 16.04 and 8 GB of RAM each. The communication
bandwidth between two machines for LAN setting is set to 1
GB/s. Specifically, we use the unsigned long integer type in
C++ for secure arithmetic operations and use a state-of-the-art
computation framework EMP-toolkit [36] for garbled circuits.
In our experiment, buyers are randomly distributed in 1000×
1000m2 area, and the interference range is randomly from 50m
to 100m. The sell-bids and buy-bids are uniformly from (0,10].
To ensure security and accuracy, we set the bit length of each
values ℓ = 32 with ℓF = 16 bits in the fractional part, and the
symmetric security parameter κ = 128 for garbled circuits.

B. Benchmarking of secure operations on secret-shared data

We evaluate the performance of secure basic operations on
secret-shared data. We report results for both offline and online
time separately. The offline stage includes the computation and
communication that are independent of the input including the
precomputation of multiplication triplets and garbled circuits,
and the generation of permutation matrices in SST protocol,
while the online phase consists of all input-dependent steps.

We first list the computation time and communication
cost of secure arithmetic operations, our custom-built garbled
circuits, and secure maximum (SecMax) protocol in Table III.
The running time includes the computation time and data
transmission time of both sides. We find that these basic
operations enjoy a high performance during the online stage,
which lays a good foundation for more complex protocols.
Next, as shown in Fig. 4(a), we compare online computation
time (for varying lengths of the sequences) of secure sort (SST)
protocol with two state-of-the-art sort protocols in [14] and
[15], which are based on additive homomorphic encryption
and pure garbled circuits, respectively. We find that the time
cost in SST protocol is almost increased linearly with the
length of sequences, which is consistent with the compu-
tational complexity of underlying quick sort (O(n log n)).
Compared with previous works, the online computation time in
SST protocol has remarkable advantages, as it does not involve

TABLE III
RUNNING TIME (IN µs) AND COMMUNICATION COST (IN bytes)

FOR ONE SECURE OPERATION ON SECRET-SHARED DATA

Operations Online Stage Offline Stage
Time Comm Time Comm

Secure addition 1 0 0 0
Secure multiplication 145 16 276911 1050

COMP 516 1596 6643 0
COMP-ADD 568 1642 8447 0
NEQ-ADD 538 1536 8256 0
DIV-ADD 594 1824 8543 0
SecMax 816 1702 280456 1050



any time-consuming cryptographic operation (e.g., homomor-
phic encryptions in [14] and large-scale circuit operation in
[15]). Then, we also measure the online time for varying
dimensions of arrays when performing secure sorting on a
multidimensional array. Since the previous protocols in [14]
and [15] cannot be directly applied to multidimensional-array
sorting, we only present the impact of different dimensions
on SST protocol in Fig. 4(b). The time cost in SST protocol
with different n increases at a linear speed as the dimension of
arrays (d) increases, since the number of the added operations
is linear with the extended dimensions. But for all this, the
online time remains relatively small, as the added operations
only include secure multiplications and element swaps.
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Fig. 4. Online computation time of SST protocol.

C. Performance of secure spectrum auction

We evaluate the performance of our secure spectrum auc-
tion that includes three phases, i.e., bid submitting, buyer
grouping, and spectrum allocation. To make a comprehensive
performance evaluation, we compare our protocols with two
advanced scheme SDSA [9] and PS-TAHES [11]. For a fair
comparison, we assume that a bidder has the same bid for all
channels in the evaluation. It is worth noting that the security
level of these schemes is lower than ours, e.g., SDSA cannot
support privacy-preserving buyer grouping, and PS-TAHES
discloses the order of locations.

During the bid submitting, sellers and buyers use additive
secret sharing to divide their data before submission, which
is very suitable for lightweight computing devices. According
to our evaluation, single execution time for data dividing can
be at microsecond level. Next, we illustrate the performance
of privacy-preserving buyer grouping (PPBG) protocol and
privacy-preserving spectrum allocation (PPSA) protocol in
Table IV. Note that the number of sellers M is set to 50 and
the number of buyers N varies from 200 to 1000. We find that
buyer grouping takes up most of the auction time, as this stage
involves abundant COMP-circuit computations. For instance,
when M = 50 and N = 200, the online computation time
and communication cost of PPBG protocol are 25.87s and
66.85MB. This result still owns an important advantage com-
pared with PS-TAHES, which takes 287.21s and 275.92MB
to group buyers when M = 20 and N = 100. Furthermore,
we compare the performance of spectrum allocation between
PPSA protocol and previous works. As shown in Fig. 5(a),
PPSA protocol is up to 2.8× faster than SDSA and 7.3× faster
than PS-TAHES. Fig. 5(b) shows that PPSA protocol also has

TABLE IV
COMPUTATION TIME AND COMMUNICATION COST OF BUYER GROUPING

AND SPECTRUM ALLOCATION WHEN M = 50

Stage Buyer grouping Spectrum allocation

N = 200
Time (s) 25.87 2.17

Comm (MB) 66.85 1.15

N = 400
Time (s) 84.43 2.91

Comm (MB) 256.39 3.44

N = 600
Time (s) 172.54 5.08

Comm (MB) 578.61 7.09

N = 800
Time (s) 30.16 9.94

Comm (MB) 1024.54 12.06

N = 1000
Time (s) 496.54 20.26

Comm (MB) 1662.38 18.32

remarkable advantages in communication cost over others. The
underlying reason is that our protocol reduces time-consuming
cryptographic operations as much as possible by employing
the lightweight additive-secret-sharing technique and basic
garbled circuits to execute the majority of secure computations.
In contrast to our scheme, SDSA needs to perform large-scale
garbled-circuit computations, while PS-TAHES involves a
mass of homomorphic encryptions/decryptions and operations
on homomorphic ciphertexts.
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Fig. 5. Performance comparison in the stage of spectrum allocation.

VIII. CONCLUSION

In this paper, we propose a lightweight spectrum auction
framework with strong security guarantees for both users’
locations and bids. Technically, we design a set of secure basic
operations by leveraging lightweight cryptographic primitives
(i.e., additive sharing and garbled circuits) on secret-shared
data, to achieve security, efficiency, and scalability simulta-
neously. Formal security analysis is presented showing all
protocols involved in our auction are secure under the semi-
honest adversary model. We demonstrate the high-efficiency of
our design by comparing with state-of-the-art works through
extensive experiments. In the future, we plan to extend our
framework to support a variety of secure auction schemes.
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